Stability and convergence of the difference methods for the space–time fractional advection–diffusion equation F Liu, P Zhuang, V Anh, I Turner, K Burrage Applied Mathematics and Computation 191 (1), 12-20, 2007 | 595 | 2007 |

Parallel and sequential methods for ordinary differential equations K Burrage Clarendon Press, 1995 | 527 | 1995 |

Stochastic approaches for modelling in vivo reactions TE Turner, S Schnell, K Burrage Computational biology and chemistry 28 (3), 165-178, 2004 | 404 | 2004 |

Stability criteria for implicit Runge–Kutta methods K Burrage, JC Butcher SIAM Journal on Numerical Analysis 16 (1), 46-57, 1979 | 389 | 1979 |

Binomial leap methods for simulating stochastic chemical kinetics T Tian, K Burrage The Journal of chemical physics 121 (21), 10356-10364, 2004 | 387 | 2004 |

Non-linear stability of a general class of differential equation methods K Burrage, JC Butcher BIT Numerical Mathematics 20 (2), 185-203, 1980 | 330 | 1980 |

Fourier spectral methods for fractional-in-space reaction-diffusion equations A Bueno-Orovio, D Kay, K Burrage BIT Numerical mathematics 54, 937-954, 2014 | 316 | 2014 |

Oscillatory regulation of Hes1: discrete stochastic delay modelling and simulation M Barrio, K Burrage, A Leier, T Tian PLoS computational biology 2 (9), e117, 2006 | 309 | 2006 |

A Crank--Nicolson ADI spectral method for a two-dimensional Riesz space fractional nonlinear reaction-diffusion equation F Zeng, F Liu, C Li, K Burrage, I Turner, V Anh SIAM Journal on Numerical Analysis 52 (6), 2599-2622, 2014 | 305 | 2014 |

Stochastic models for regulatory networks of the genetic toggle switch T Tian, K Burrage Proceedings of the national Academy of Sciences 103 (22), 8372-8377, 2006 | 294 | 2006 |

Restarted GMRES preconditioned by deflation J Erhel, K Burrage, B Pohl Journal of computational and applied mathematics 69 (2), 303-318, 1996 | 293 | 1996 |

ISIS, the intron information system, reveals the high frequency of alternative splicing in the human genome L Croft, S Schandorff, F Clark, K Burrage, P Arctander, JS Mattick Nature genetics 24 (4), 340-341, 2000 | 280 | 2000 |

High strong order explicit Runge-Kutta methods for stochastic ordinary differential equations K Burrage, PM Burrage Applied Numerical Mathematics 22 (1-3), 81-101, 1996 | 263 | 1996 |

A special family of Runge-Kutta methods for solving stiff differential equations K Burrage BIT Numerical Mathematics 18 (1), 22-41, 1978 | 228 | 1978 |

Numerical methods for strong solutions of stochastic differential equations: an overview K Burrage, PM Burrage, T Tian Proceedings of the Royal Society of London. Series A: Mathematical, Physical …, 2004 | 224 | 2004 |

An efficient implicit FEM scheme for fractional-in-space reaction-diffusion equations K Burrage, N Hale, D Kay SIAM Journal on Scientific Computing 34 (4), A2145-A2172, 2012 | 214 | 2012 |

Identifying optimal lipid raft characteristics required to promote nanoscale protein-protein interactions on the plasma membrane DV Nicolau Jr, K Burrage, RG Parton, JF Hancock Molecular and cellular biology 26 (1), 313-323, 2006 | 213 | 2006 |

Fractional diffusion models of cardiac electrical propagation: role of structural heterogeneity in dispersion of repolarization A Bueno-Orovio, D Kay, V Grau, B Rodriguez, K Burrage Journal of The Royal Society Interface 11 (97), 20140352, 2014 | 212 | 2014 |

Numerical method and analytical technique of the modified anomalous subdiffusion equation with a nonlinear source term F Liu, C Yang, K Burrage Journal of Computational and Applied Mathematics 231 (1), 160-176, 2009 | 201 | 2009 |

Finite difference methods and a Fourier analysis for the fractional reaction–subdiffusion equation C Chen, F Liu, K Burrage Applied Mathematics and Computation 198 (2), 754-769, 2008 | 201 | 2008 |