Highly accurate protein structure prediction with AlphaFold J Jumper, R Evans, A Pritzel, T Green, M Figurnov, O Ronneberger, ... nature 596 (7873), 583-589, 2021 | 29663 | 2021 |
AlphaFold Protein Structure Database: massively expanding the structural coverage of protein-sequence space with high-accuracy models M Varadi, S Anyango, M Deshpande, S Nair, C Natassia, G Yordanova, ... Nucleic acids research 50 (D1), D439-D444, 2022 | 5748 | 2022 |
Highly accurate protein structure prediction for the human proteome K Tunyasuvunakool, J Adler, Z Wu, T Green, M Zielinski, A Žídek, ... Nature 596 (7873), 590-596, 2021 | 2402 | 2021 |
Accurate structure prediction of biomolecular interactions with AlphaFold 3 J Abramson, J Adler, J Dunger, R Evans, T Green, A Pritzel, ... Nature, 1-3, 2024 | 1578 | 2024 |
Monte carlo gradient estimation in machine learning S Mohamed, M Rosca, M Figurnov, A Mnih Journal of Machine Learning Research 21 (132), 1-62, 2020 | 523 | 2020 |
Spatially adaptive computation time for residual networks M Figurnov, MD Collins, Y Zhu, L Zhang, J Huang, D Vetrov, ... Proceedings of the IEEE conference on computer vision and pattern …, 2017 | 407 | 2017 |
Applying and improving AlphaFold at CASP14 J Jumper, R Evans, A Pritzel, T Green, M Figurnov, O Ronneberger, ... Proteins: Structure, Function, and Bioinformatics 89 (12), 1711-1721, 2021 | 337 | 2021 |
Implicit reparameterization gradients M Figurnov, S Mohamed, A Mnih NeurIPS 2018, 2018 | 282 | 2018 |
Perforatedcnns: Acceleration through elimination of redundant convolutions M Figurnov, A Ibraimova, DP Vetrov, P Kohli Advances in neural information processing systems 29, 2016 | 194 | 2016 |
Variational autoencoder with arbitrary conditioning O Ivanov, M Figurnov, D Vetrov ICLR 2019, 2018 | 170 | 2018 |
Highly accurate protein structure prediction with AlphaFold., 2021, 596 J Jumper, R Evans, A Pritzel, T Green, M Figurnov, O Ronneberger, ... DOI: https://doi. org/10.1038/s41586-021-03819-2, 583-589, 0 | 163 | |
High accuracy protein structure prediction using deep learning J Jumper, R Evans, A Pritzel, T Green, M Figurnov, K Tunyasuvunakool, ... Fourteenth critical assessment of techniques for protein structure …, 2020 | 157 | 2020 |
AlphaFold 2 J Jumper, R Evans, A Pritzel, T Green, M Figurnov, K Tunyasuvunakool, ... Fourteenth Critical Assessment of Techniques for Protein Structure Prediction, 2020 | 109* | 2020 |
This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. A. Cowie, B. Romera-Paredes, S. Nikolov, R. Jain, J J Jumper, R Evans, A Pritzel, T Green, M Figurnov, O Ronneberger, ... Adler, T. Back, S. Petersen, D. Reiman, E. Clancy, M. Zielinski, M …, 2021 | 73 | 2021 |
Tensor train decomposition on tensorflow (t3f) A Novikov, P Izmailov, V Khrulkov, M Figurnov, I Oseledets Journal of Machine Learning Research 21 (30), 1-7, 2020 | 72 | 2020 |
861 Tunyasuvunakool J Jumper, R Evans, A Pritzel, T Green, M Figurnov, O Ronneberger K., Bates, R., Žídek, A., Potapenko, A., et al 862, 2021 | 13 | 2021 |
Probabilistic adaptive computation time M Figurnov, A Sobolev, D Vetrov arXiv preprint arXiv:1712.00386, 2017 | 11 | 2017 |
Linear combination of random forests for the Relevance Prediction Challenge M Figurnov, A Kirillov Proc. of Int. Conf. on Web Service and Data Mining workshop on Web Search …, 2012 | 7 | 2012 |
Measure-valued derivatives for approximate bayesian inference M Rosca, M Figurnov, S Mohamed, A Mnih NeurIPS Workshop on Approximate Bayesian Inference, 2019 | 4 | 2019 |
Robust variational inference M Figurnov, K Struminsky, D Vetrov arXiv preprint arXiv:1611.09226, 2016 | 3 | 2016 |