Personalized recommendation via cross-domain triadic factorization L Hu, J Cao, G Xu, L Cao, Z Gu, C Zhu Proceedings of the 22nd international conference on World Wide Web, 595-606, 2013 | 301 | 2013 |
Sequential recommender systems: challenges, progress and prospects S Wang, L Hu, Y Wang, L Cao, QZ Sheng, M Orgun arXiv preprint arXiv:2001.04830, 2019 | 235 | 2019 |
Attention-based transactional context embedding for next-item recommendation S Wang, L Hu, L Cao, X Huang, D Lian, W Liu Proceedings of the AAAI conference on artificial intelligence 32 (1), 2018 | 194 | 2018 |
Deep modeling of group preferences for group-based recommendation L Hu, J Cao, G Xu, L Cao, Z Gu, W Cao Proceedings of the AAAI Conference on Artificial Intelligence 28 (1), 2014 | 112 | 2014 |
Diversifying Personalized Recommendation with User-session Context. L Hu, L Cao, S Wang, G Xu, J Cao, Z Gu IJCAI, 1858-1864, 2017 | 107 | 2017 |
Graph learning based recommender systems: A review S Wang, L Hu, Y Wang, X He, QZ Sheng, MA Orgun, L Cao, F Ricci, ... arXiv preprint arXiv:2105.06339, 2021 | 97 | 2021 |
Modeling multi-purpose sessions for next-item recommendations via mixture-channel purpose routing networks S Wang, L Hu, Y Wang, QZ Sheng, M Orgun, L Cao International Joint Conference on Artificial Intelligence, 2019 | 93 | 2019 |
A social-aware service recommendation approach for mashup creation W Xu, J Cao, L Hu, J Wang, M Li 2013 ieee 20th international conference on web services, 107-114, 2013 | 80 | 2013 |
Hers: Modeling influential contexts with heterogeneous relations for sparse and cold-start recommendation L Hu, S Jian, L Cao, Z Gu, Q Chen, A Amirbekyan Proceedings of the AAAI Conference on Artificial Intelligence 33 (01), 3830-3837, 2019 | 53 | 2019 |
Perceiving the next choice with comprehensive transaction embeddings for online recommendation S Wang, L Hu, L Cao Machine Learning and Knowledge Discovery in Databases: European Conference …, 2017 | 39 | 2017 |
Intention nets: psychology-inspired user choice behavior modeling for next-basket prediction S Wang, L Hu, Y Wang, QZ Sheng, M Orgun, L Cao Proceedings of the AAAI Conference on Artificial Intelligence 34 (04), 6259-6266, 2020 | 37 | 2020 |
Learning informative priors from heterogeneous domains to improve recommendation in cold-start user domains L Hu, L Cao, J Cao, Z Gu, G Xu, D Yang ACM Transactions on Information Systems (TOIS) 35 (2), 1-37, 2016 | 32 | 2016 |
Interpretable recommendation via attraction modeling: Learning multilevel attractiveness over multimodal movie contents L Hu, S Jian, L Cao, Q Chen IJCAI International Joint Conference on Artificial Intelligence, 2018 | 31 | 2018 |
Intention2basket: A neural intention-driven approach for dynamic next-basket planning S Wang, L Hu, Y Wang, QZ Sheng, M Orgun, L Cao Twenty-Ninth International Joint Conference on Artificial Intelligence and …, 2020 | 30 | 2020 |
Graph learning approaches to recommender systems: A review S Wang, L Hu, Y Wang, X He, QZ Sheng, M Orgun, L Cao, N Wang, ... arXiv preprint arXiv:2004.11718, 2020 | 26 | 2020 |
Improving the quality of recommendations for users and items in the tail of distribution L Hu, L Cao, J Cao, Z Gu, G Xu, J Wang ACM Transactions on Information Systems (TOIS) 35 (3), 1-37, 2017 | 22 | 2017 |
Deep modeling complex couplings within financial markets W Cao, L Hu, L Cao Proceedings of the AAAI Conference on Artificial Intelligence 29 (1), 2015 | 20 | 2015 |
Metric-based auto-instructor for learning mixed data representation S Jian, L Hu, L Cao, K Lu Proceedings of the AAAI Conference on Artificial Intelligence 32 (1), 2018 | 19 | 2018 |
Cross-Domain Collaborative Filtering via Bilinear Multilevel Analysis. L Hu, J Cao, G Xu, J Wang, Z Gu, L Cao IJCAI, 2626-2632, 2013 | 18 | 2013 |
Hierarchical attentive transaction embedding with intra-and inter-transaction dependencies for next-item recommendation S Wang, L Cao, L Hu, S Berkovsky, X Huang, L Xiao, W Lu IEEE Intelligent Systems 36 (4), 56-64, 2020 | 17 | 2020 |