Invariance principle for the random conductance model S Andres, MT Barlow, JD Deuschel, BM Hambly Probability Theory and Related Fields 156 (3-4), 535-580, 2013 | 113 | 2013 |

Invariance principle for the random conductance model in a degenerate ergodic environment S Andres, JD Deuschel, M Slowik Annals of Probability 43 (4), 1866-1891, 2015 | 86 | 2015 |

Energy inequalities for cutoff functions and some applications S Andres, MT Barlow Journal für die reine und angewandte Mathematik (Crelles Journal) 699, 183-215, 2015 | 69 | 2015 |

Quenched invariance principle for random walks with time-dependent ergodic degenerate weights S Andres, A Chiarini, JD Deuschel, M Slowik The Annals of Probability 46 (1), 302-336, 2018 | 62 | 2018 |

Harnack inequalities on weighted graphs and some applications to the random conductance model S Andres, JD Deuschel, M Slowik Probability Theory and Related Fields 164 (3-4), 931-977, 2016 | 60 | 2016 |

Particle approximation of the Wasserstein diffusion S Andres, MK von Renesse Journal of Functional Analysis 258 (11), 3879-3905, 2010 | 49 | 2010 |

Heat kernel estimates for random walks with degenerate weights S Andres, JD Deuschel, M Slowik Electron. J. Probab. 21 (33), 1-21, 2016 | 42 | 2016 |

Continuity and estimates of the Liouville heat kernel with applications to spectral dimensions S Andres, N Kajino Probability Theory and Related Fields 166 (3-4), 713-752, 2015 | 42 | 2015 |

Invariance principle for the random conductance model with dynamic bounded conductances S Andres Ann. Inst. H. Poincaré Probab. Statist. 50 (2), 352-374, 2014 | 33 | 2014 |

Quenched local limit theorem for random walks among time-dependent ergodic degenerate weights S Andres, A Chiarini, M Slowik Probability Theory and Related Fields 179 (3), 1145-1181, 2021 | 24 | 2021 |

Berry–Esseen theorem and quantitative homogenization for the random conductance model with degenerate conductances S Andres, S Neukamm Stochastics and Partial Differential Equations: Analysis and Computations 7 …, 2019 | 21 | 2019 |

Local Limit Theorems for the Random Conductance Model and Applications to the Ginzburg–Landau Interface Model S Andres, PA Taylor Journal of Statistical Physics 182 (2), 35, 2021 | 20 | 2021 |

Heat kernel estimates and intrinsic metric for random walks with general speed measure under degenerate conductances S Andres, JD Deuschel, M Slowik | 19 | 2019 |

Green kernel asymptotics for two-dimensional random walks under random conductances S Andres, JD Deuschel, M Slowik | 16 | 2020 |

Pathwise differentiability for SDEs in a smooth domain with reflection S Andres | 15 | 2011 |

Pathwise differentiability for SDEs in a convex polyhedron with oblique reflection S Andres Annales de l'IHP Probabilités et statistiques 45 (1), 104-116, 2009 | 14 | 2009 |

Lower Gaussian heat kernel bounds for the random conductance model in a degenerate ergodic environment S Andres, N Halberstam Stochastic Processes and their Applications 139, 212-228, 2021 | 10 | 2021 |

First passage percolation with long-range correlations and applications to random Schrödinger operators S Andres, A Prévost The Annals of Applied Probability 34 (2), 1846-1895, 2024 | 8 | 2024 |

Diffusion Processes with Reflection S Andres | 7 | 2010 |

Uniqueness and regularity for a system of interacting Bessel processes via the Muckenhoupt condition S Andres, MK von Renesse Transactions of the American Mathematical Society 364 (3), 1413-1426, 2012 | 5 | 2012 |