Follow
Yi Zhou
Yi Zhou
Research Staff Member, IBM Research
Verified email at ibm.com
Title
Cited by
Cited by
Year
A hybrid approach to privacy-preserving federated learning
S Truex, N Baracaldo, A Anwar, T Steinke, H Ludwig, R Zhang, Y Zhou
Proceedings of the 12th ACM Workshop on Artificial Intelligence and Security …, 2019
4002019
An optimal randomized incremental gradient method
G Lan, Y Zhou
Mathematical programming, 1-49, 2017
2142017
Communication-efficient algorithms for decentralized and stochastic optimization
G Lan, S Lee, Y Zhou
Mathematical Programming, 1-48, 2017
1902017
Conditional gradient sliding for convex optimization
G Lan, Y Zhou
SIAM Journal on Optimization 26 (2), 1379-1409, 2016
1452016
Hybridalpha: An efficient approach for privacy-preserving federated learning
R Xu, N Baracaldo, Y Zhou, A Anwar, H Ludwig
Proceedings of the 12th ACM Workshop on Artificial Intelligence and Security …, 2019
1412019
Tifl: A tier-based federated learning system
Z Chai, A Ali, S Zawad, S Truex, A Anwar, N Baracaldo, Y Zhou, H Ludwig, ...
Proceedings of the 29th International Symposium on High-Performance Parallel …, 2020
772020
A unified variance-reduced accelerated gradient method for convex optimization
G Lan, Z Li, Y Zhou
Advances in Neural Information Processing Systems 32, 2019
562019
IBM Federated Learning: an Enterprise Framework White Paper V0. 1
H Ludwig, N Baracaldo, G Thomas, Y Zhou, A Anwar, S Rajamoni, Y Ong, ...
arXiv preprint arXiv:2007.10987, 2020
472020
Towards Taming the Resource and Data Heterogeneity in Federated Learning
Z Chai, H Fayyaz, Z Fayyaz, A Anwar, Y Zhou, N Baracaldo, H Ludwig, ...
2019 {USENIX} Conference on Operational Machine Learning (OpML 19), 19-21, 2019
422019
Random gradient extrapolation for distributed and stochastic optimization
G Lan, Y Zhou
SIAM Journal on Optimization 28 (4), 2753-2782, 2018
412018
Conditional accelerated lazy stochastic gradient descent
G Lan, S Pokutta, Y Zhou, D Zink
International Conference on Machine Learning, 1965-1974, 2017
342017
Mitigating Bias in Federated Learning
A Abay, Y Zhou, N Baracaldo, S Rajamoni, E Chuba, H Ludwig
arXiv preprint arXiv:2012.02447, 2020
212020
FedV: Privacy-Preserving Federated Learning over Vertically Partitioned Data
R Xu, N Baracaldo, Y Zhou, A Anwar, J Joshi, H Ludwig
Proceedings of the 14th ACM Workshop on Artificial Intelligence and Security …, 2021
132021
Curse or redemption? how data heterogeneity affects the robustness of federated learning
S Zawad, A Ali, PY Chen, A Anwar, Y Zhou, N Baracaldo, Y Tian, F Yan
Proceedings of the AAAI Conference on Artificial Intelligence 35 (12), 10807 …, 2021
102021
Adaptive Histogram-Based Gradient Boosted Trees for Federated Learning
YJ Ong, Y Zhou, N Baracaldo, H Ludwig
arXiv preprint arXiv:2012.06670, 2020
102020
Asynchronous decentralized accelerated stochastic gradient descent
G Lan, Y Zhou
IEEE Journal on Selected Areas in Information Theory 2 (2), 802-811, 2021
72021
LEGATO: A LayerwisE Gradient AggregaTiOn Algorithm for Mitigating Byzantine Attacks in Federated Learning
K Varma, Y Zhou, N Baracaldo, A Anwar
2021 IEEE 14th International Conference on Cloud Computing (CLOUD), 272-277, 2021
62021
FLoRA: Single-shot Hyper-parameter Optimization for Federated Learning
Y Zhou, P Ram, T Salonidis, N Baracaldo, H Samulowitz, H Ludwig
arXiv preprint arXiv:2112.08524, 2021
52021
Graph topology invariant gradient and sampling complexity for decentralized and stochastic optimization
G Lan, Y Ouyang, Y Zhou
arXiv preprint arXiv:2101.00143, 2021
32021
On the Convergence of Gradient Extrapolation Methods for Unbalanced Optimal Transport
QM Nguyen, HH Nguyen, Y Zhou, LM Nguyen
arXiv preprint arXiv:2202.03618, 2022
12022
The system can't perform the operation now. Try again later.
Articles 1–20