Follow
Xuhui Zhang
Xuhui Zhang
Verified email at stanford.edu
Title
Cited by
Cited by
Year
Distributionally Robust Parametric Maximum Likelihood Estimation
VA Nguyen, X Zhang, J Blanchet, A Georghiou
Advances in Neural Information Processing Systems 33, 2020
92020
Machine Learning's Dropout Training is Distributionally Robust Optimal
J Blanchet, Y Kang, JLM Olea, VA Nguyen, X Zhang
arXiv preprint arXiv:2009.06111, 2020
62020
Enhanced Balancing of Bias-Variance Tradeoff in Stochastic Estimation: A Minimax Perspective
H Lam, X Zhang, X Zhang
Operations Research, 2022
32022
Bayesian Imputation with Optimal Look-Ahead-Bias and Variance Tradeoff
J Blanchet, F Hernandez, VA Nguyen, M Pelger, X Zhang
arXiv preprint arXiv:2202.00871, 2022
3*2022
High-throughput experiments for rare-event rupture of materials
Y Zhou, X Zhang, M Yang, Y Pan, Z Du, J Blanchet, Z Suo, T Lu
Matter 5 (2), 654-665, 2022
32022
Minimax efficient finite-difference gradient estimators
H Lam, X Zhang
2019 Winter Simulation Conference (WSC), 392-403, 2019
32019
Minimax efficient finite-difference stochastic gradient estimators using black-box function evaluations
H Lam, H Li, X Zhang
Operations Research Letters 49 (1), 40-47, 2021
22021
A Class of Geometric Structures in Transfer Learning: Minimax Bounds and Optimality
X Zhang, J Blanchet, S Ghosh, MS Squillante
International Conference on Artificial Intelligence and Statistics, 3794-3820, 2022
12022
Detection and reduction of systematic bias in high-throughput rupture experiments
H Wu, X Zhang, Y Zhou, J Blanchet, Z Suo, T Lu
Journal of the Mechanics and Physics of Solids 174, 105249, 2023
2023
Wasserstein Distributionally Robust Gaussian Process Regression and Linear Inverse Problems
X Zhang, J Blanchet, Y Marzouk, VA Nguyen, S Wang
arXiv preprint arXiv:2205.13111, 2022
2022
The system can't perform the operation now. Try again later.
Articles 1–10