Memory loss for time-dependent dynamical systems W Ott, M Stenlund, L Young Math. Res. Lett 16 (3), 463-475, 2009 | 55 | 2009 |
Quenched CLT for random toral automorphism A Ayyer, C Liverani, M Stenlund arXiv preprint arXiv:0711.3818, 2007 | 47 | 2007 |
Dispersing billiards with moving scatterers M Stenlund, LS Young, H Zhang arXiv preprint arXiv:1210.0011, 2012 | 40 | 2012 |
Non-stationary compositions of Anosov diffeomorphisms M Stenlund Nonlinearity 24 (10), 2991, 2011 | 32 | 2011 |
From limit cycles to strange attractors W Ott, M Stenlund Communications in Mathematical Physics 296 (1), 215-249, 2010 | 29 | 2010 |
Exponential decay of correlations for randomly chosen hyperbolic toral automorphisms A Ayyer, M Stenlund Chaos: An Interdisciplinary Journal of Nonlinear Science 17 (4), 2007 | 27 | 2007 |
A vector-valued almost sure invariance principle for Sinai billiards with random scatterers M Stenlund Communications in Mathematical Physics 325, 879-916, 2014 | 24 | 2014 |
Quasistatic dynamics with intermittency J Leppänen, M Stenlund Mathematical Physics, Analysis and Geometry 19, 1-23, 2016 | 22 | 2016 |
Quasistatic dynamical systems N Dobbs, M Stenlund Ergodic Theory and Dynamical Systems 37 (8), 2556-2596, 2017 | 20 | 2017 |
A coupling approach to random circle maps expanding on the average M Stenlund, H Sulku Stochastics and Dynamics 14 (04), 1450008, 2014 | 17 | 2014 |
Positive Lyapunov exponent by a random perturbation Z Lian, M Stenlund Dynamical Systems 27 (2), 239-252, 2012 | 15 | 2012 |
A strong pair correlation bound implies the CLT for Sinai Billiards M Stenlund Journal of Statistical Physics 140 (1), 154-169, 2010 | 15 | 2010 |
On the Tangent Lines of a Parabola M Stenlund The College Mathematics Journal 32 (3), 194-196, 2001 | 15 | 2001 |
Quenched normal approximation for random sequences of transformations O Hella, M Stenlund Journal of Statistical Physics 178, 1-37, 2020 | 13 | 2020 |
An almost sure ergodic theorem for quasistatic dynamical systems M Stenlund Mathematical Physics, Analysis and Geometry 19, 1-18, 2016 | 10 | 2016 |
A local limit theorem for a transient chaotic walk in a frozen environment L Leskelä, M Stenlund Stochastic Processes and their Applications 121 (12), 2818-2838, 2011 | 8 | 2011 |
Sunklodas’ approach to normal approximation for time-dependent dynamical systems J Leppänen, M Stenlund Journal of Statistical Physics 181 (5), 1523-1564, 2020 | 7 | 2020 |
Deterministic walks in quenched random environments of chaotic maps T Simula, M Stenlund Journal of Physics A: Mathematical and Theoretical 42 (24), 245101, 2009 | 7 | 2009 |
A note on the finite-dimensional distributions of dispersing billiard processes J Leppänen, M Stenlund Journal of Statistical Physics 168, 128-145, 2017 | 6 | 2017 |
A local limit theorem for random walks in balanced environments M Stenlund Electronic Communications in Probability 18 (19), 1-13, 2013 | 4 | 2013 |