Follow
Allard Hendriksen
Allard Hendriksen
Verified email at cwi.nl
Title
Cited by
Cited by
Year
Noise2inverse: Self-supervised deep convolutional denoising for tomography
AA Hendriksen, DM Pelt, KJ Batenburg
IEEE Transactions on Computational Imaging 6, 1320-1335, 2020
1652020
Segmentation of dental cone‐beam CT scans affected by metal artifacts using a mixed‐scale dense convolutional neural network
J Minnema, M van Eijnatten, AA Hendriksen, N Liberton, DM Pelt, ...
Medical physics 46 (11), 5027-5035, 2019
832019
Optional stopping with Bayes factors: a categorization and extension of folklore results, with an application to invariant situations
A Hendriksen, R de Heide, P Grünwald
Bayesian Analysis 16 (3), 961-989, 2021
452021
Deep denoising for multi-dimensional synchrotron X-ray tomography without high-quality reference data
AA Hendriksen, M Bührer, L Leone, M Merlini, N Vigano, DM Pelt, ...
Scientific reports 11 (1), 11895, 2021
402021
Tomosipo: fast, flexible, and convenient 3D tomography for complex scanning geometries in Python
AA Hendriksen, D Schut, WJ Palenstijn, N Viganó, J Kim, DM Pelt, ...
Optics Express 29 (24), 40494-40513, 2021
302021
Prototyping X-ray tomographic reconstruction pipelines with FleXbox
A Kostenko, WJ Palenstijn, SB Coban, AA Hendriksen, R van Liere, ...
SoftwareX 11, 100364, 2020
202020
On-the-fly machine learning for improving image resolution in tomography
AA Hendriksen, DM Pelt, WJ Palenstijn, SB Coban, KJ Batenburg
Applied Sciences 9 (12), 2445, 2019
172019
Foam-like phantoms for comparing tomography algorithms
DM Pelt, AA Hendriksen, KJ Batenburg
Journal of Synchrotron Radiation 29 (1), 254-265, 2022
112022
Noise2Filter: fast, self-supervised learning and real-time reconstruction for 3D computed tomography
MJ Lagerwerf, AA Hendriksen, JW Buurlage, KJ Batenburg
Machine Learning: Science and Technology 2 (1), 015012, 2020
92020
ahendriksenh/msd_pytorch: v0. 7.2
AA Hendriksen
Version v0 7 (10.5281), 2019
72019
Deep learning based classification of dynamic processes in time-resolved X-ray tomographic microscopy
M Bührer, H Xu, AA Hendriksen, FN Büchi, J Eller, M Stampanoni, ...
Scientific Reports 11 (1), 24174, 2021
62021
Rianne de Heide, and Peter Grünwald. Optional stopping with bayes factors: a categorization and extension of folklore results, with an application to invariant situations
A Hendriksen
Bayesian Analysis 16 (3), 961-989, 2021
52021
Betting as an alternative to p-values
AA Hendriksen
Master’s thesis, 2017
52017
Deep‐learning‐based joint rigid and deformable contour propagation for magnetic resonance imaging‐guided prostate radiotherapy
ID Kolenbrander, M Maspero, AA Hendriksen, R Pollitt, ...
Medical Physics 51 (4), 2367-2377, 2024
42024
LEAN: graph-based pruning for convolutional neural networks by extracting longest chains
R Schoonhoven, AA Hendriksen, DM Pelt, KJ Batenburg
arXiv preprint arXiv:2011.06923, 2020
42020
How auto-differentiation can improve CT workflows: classical algorithms in a modern framework
R Schoonhoven, A Skorikov, WJ Palenstijn, DM Pelt, AA Hendriksen, ...
Optics Express 32 (6), 9019-9041, 2024
12024
Deep learning for tomographic reconstruction with limited data
AA Hendriksen
PhD thesis. Leiden University, 2022 (cit. on p. 35), 2022
12022
CT image segmentation for additive manufactured skull implants using deep learning
J Minnema, M van Eijnatten, J Wolff, AA Hendriksen, KJ Batenburg, ...
Transactions on Additive Manufacturing Meets Medicine 1 (1), 2019
2019
Percolatietheorie op bomen
AA Hendriksen
The system can't perform the operation now. Try again later.
Articles 1–19