Exponentially fitted two-step hybrid methods for y ″= f (x, y) R D’Ambrosio, E Esposito, B Paternoster Journal of computational and applied mathematics 235 (16), 4888-4897, 2011 | 52 | 2011 |

Two-step almost collocation methods for ordinary differential equations R D’Ambrosio, M Ferro, Z Jackiewicz, B Paternoster Numerical Algorithms 53 (2), 195-217, 2010 | 49 | 2010 |

Two-step hybrid collocation methods for y ″= f (x, y) R D’Ambrosio, M Ferro, B Paternoster Applied Mathematics Letters 22 (7), 1076-1080, 2009 | 48 | 2009 |

Trigonometrically fitted two-step hybrid methods for special second order ordinary differential equations R D’Ambrosio, M Ferro, B Paternoster Mathematics and computers in simulation 81 (5), 1068-1084, 2011 | 42 | 2011 |

Numerical solution of time fractional diffusion systems K Burrage, A Cardone, R D'Ambrosio, B Paternoster Applied Numerical Mathematics 116, 82-94, 2017 | 41 | 2017 |

Construction of the EF-based Runge–Kutta methods revisited R D'Ambrosio, LG Ixaru, B Paternoster Computer Physics Communications 182 (2), 322-329, 2011 | 39 | 2011 |

Exponentially fitted two-step Runge–Kutta methods: construction and parameter selection R D’Ambrosio, E Esposito, B Paternoster Applied Mathematics and Computation 218 (14), 7468-7480, 2012 | 37 | 2012 |

Two-step Runge-Kutta methods with quadratic stability functions D Conte, R D’Ambrosio, Z Jackiewicz Journal of Scientific Computing 44 (2), 191-218, 2010 | 36 | 2010 |

Continuous two-step Runge–Kutta methods for ordinary differential equations R D’Ambrosio, Z Jackiewicz Numerical Algorithms 54 (2), 169-193, 2010 | 34 | 2010 |

Numerical solution of a diffusion problem by exponentially fitted finite difference methods R D’Ambrosio, B Paternoster SpringerPlus 3 (1), 1-7, 2014 | 33 | 2014 |

Construction and implementation of highly stable two-step continuous methods for stiff differential systems R D’Ambrosio, Z Jackiewicz Mathematics and Computers in Simulation 81 (9), 1707-1728, 2011 | 33 | 2011 |

Revised exponentially fitted Runge–Kutta–Nyström methods R D’Ambrosio, B Paternoster, G Santomauro Applied Mathematics Letters 30, 56-60, 2014 | 32 | 2014 |

Numerical solution of reaction–diffusion systems of λ–ω type by trigonometrically fitted methods R D’Ambrosio, B Paternoster Journal of Computational and Applied Mathematics 294, 436-445, 2016 | 31 | 2016 |

Two-step diagonally-implicit collocation based methods for Volterra Integral Equations D Conte, R DʼAmbrosio, B Paternoster Applied Numerical Mathematics 62 (10), 1312-1324, 2012 | 31 | 2012 |

Long-term stability of multi-value methods for ordinary differential equations R D’Ambrosio, E Hairer Journal of Scientific Computing 60 (3), 627-640, 2014 | 30 | 2014 |

Two-step modified collocation methods with structured coefficient matrices R D’Ambrosio, B Paternoster Appl. Numer. Math 62, 1325-1334, 2012 | 29 | 2012 |

Some remarks on spaces of Morrey type L Caso, R D'Ambrosio, S Monsurrò Abstract and Applied Analysis 2010, 2010 | 28 | 2010 |

On the stability of\begin {document} \end {document}-methods for stochastic Volterra integral equations D Conte, R D'Ambrosio, B Paternoster Discrete & Continuous Dynamical Systems-B 23 (7), 2695, 2018 | 27 | 2018 |

Numerical preservation of long-term dynamics by stochastic two-step methods R D'Ambrosio, M Moccaldi, B Paternoster Discrete & Continuous Dynamical Systems-B 23 (7), 2763, 2018 | 27 | 2018 |

Adapted numerical methods for advection–reaction–diffusion problems generating periodic wavefronts R D’Ambrosio, M Moccaldi, B Paternoster Computers & Mathematics with Applications 74 (5), 1029-1042, 2017 | 27 | 2017 |