Non-existence of bi-infinite geodesics in the exponential corner growth model M Balázs, O Busani, T Seppäläinen Forum of Mathematics, Sigma 8, e46, 2020 | 41 | 2020 |

Local stationarity in exponential last-passage percolation M Balázs, O Busani, T Seppäläinen Probability Theory and Related Fields 180, 113-162, 2021 | 22 | 2021 |

The stationary horizon and semi-infinite geodesics in the directed landscape O Busani, T Seppäläinen, E Sorensen The Annals of Probability 52 (1), 1-66, 2024 | 21 | 2024 |

Universality of the geodesic tree in last passage percolation O Busani, PL Ferrari The Annals of Probability 50 (1), 90-130, 2022 | 19 | 2022 |

Diffusive scaling limit of the Busemann process in Last Passage Percolation O Busani arXiv preprint arXiv:2110.03808, 2021 | 12 | 2021 |

Non-existence of bi-infinite polymers O Busani, T Seppäläinen Electronic Journal of Probability 27, 1-40, 2022 | 8 | 2022 |

On the Exponent Governing the Correlation Decay of the Process R Basu, O Busani, PL Ferrari Communications in Mathematical Physics 398 (3), 1171-1211, 2023 | 7 | 2023 |

Scaling limit of the TASEP speed process O Busani, T Seppäläinen, E Sorensen arXiv preprint arXiv:2211.04651, 2022 | 7 | 2022 |

Bounds on the running maximum of a random walk with small drift O Busani, T Seppäläinen arXiv preprint arXiv:2010.08767, 2020 | 5 | 2020 |

Aging uncoupled continuous time random walk limits O Busani | 5 | 2016 |

Scaling limit of multi-type invariant measures via the directed landscape O Busani, T Seppäläinen, E Sorensen arXiv preprint arXiv:2310.09284, 2023 | 3 | 2023 |

The TAZRP speed process G Amir, O Busani, P Gonçalves, JB Martin Annales de l'Institut Henri Poincare (B) Probabilites et statistiques 57 (3 …, 2021 | 3 | 2021 |

Invariant measures for multilane exclusion process G Amir, C Bahadoran, O Busani, E Saada arXiv preprint arXiv:2105.12974, 2021 | 3 | 2021 |

Non-existence of bi-infinite polymer Gibbs measures O Busani, T Seppäläinen arXiv preprint arXiv:2010.11279, 2020 | 3 | 2020 |

Non-existence of three non-coalescing infinite geodesics with the same direction in the directed landscape O Busani arXiv preprint arXiv:2401.00513, 2023 | 1 | 2023 |

Finite dimensional Fokker–Planck equations for continuous time random walk limits O Busani Stochastic Processes and their Applications 127 (5), 1496-1516, 2017 | 1 | 2017 |

Non-existence of bi-infinite geodesics in the exponential corner growth model (vol 8, E46, 2020) M Balazs, O Busani, T Seppalainen FORUM OF MATHEMATICS SIGMA 9, 2021 | | 2021 |

Non-existence of bi-infinite geodesics in the exponential corner growth model–Corrigendum M Balázs, O Busani, T Seppäläinen Forum of Mathematics, Sigma 9, e58, 2021 | | 2021 |

Continuous time random walk as a random walk in a random environment O Busani arXiv preprint arXiv:1709.02141, 2017 | | 2017 |

The stationary horizon and semi-infinite geodesics in the directed landscape E Sorensen, O Busani, TO Seppalainen 2022 Fall Central Sectional Meeting, 0 | | |