Mastering the game of Go with deep neural networks and tree search D Silver, A Huang, CJ Maddison, A Guez, L Sifre, G Van Den Driessche, ... nature 529 (7587), 484-489, 2016 | 19930 | 2016 |
Mastering the game of go without human knowledge D Silver, J Schrittwieser, K Simonyan, I Antonoglou, A Huang, A Guez, ... nature 550 (7676), 354-359, 2017 | 11357 | 2017 |
A general reinforcement learning algorithm that masters chess, shogi, and Go through self-play D Silver, T Hubert, J Schrittwieser, I Antonoglou, M Lai, A Guez, M Lanctot, ... Science 362 (6419), 1140-1144, 2018 | 4743 | 2018 |
Mastering atari, go, chess and shogi by planning with a learned model J Schrittwieser, I Antonoglou, T Hubert, K Simonyan, L Sifre, S Schmitt, ... Nature 588 (7839), 604-609, 2020 | 2478 | 2020 |
Mastering chess and shogi by self-play with a general reinforcement learning algorithm D Silver, T Hubert, J Schrittwieser, I Antonoglou, M Lai, A Guez, M Lanctot, ... arXiv preprint arXiv:1712.01815, 2017 | 2318 | 2017 |
Gemini: a family of highly capable multimodal models G Team, R Anil, S Borgeaud, Y Wu, JB Alayrac, J Yu, R Soricut, ... arXiv preprint arXiv:2312.11805, 2023 | 1583 | 2023 |
Starcraft ii: A new challenge for reinforcement learning O Vinyals, T Ewalds, S Bartunov, P Georgiev, AS Vezhnevets, M Yeo, ... arXiv preprint arXiv:1708.04782, 2017 | 1088 | 2017 |
Competition-level code generation with alphacode Y Li, D Choi, J Chung, N Kushman, J Schrittwieser, R Leblond, T Eccles, ... Science 378 (6624), 1092-1097, 2022 | 885 | 2022 |
Deepmind lab C Beattie, JZ Leibo, D Teplyashin, T Ward, M Wainwright, H Küttler, ... arXiv preprint arXiv:1612.03801, 2016 | 615 | 2016 |
Discovering faster matrix multiplication algorithms with reinforcement learning A Fawzi, M Balog, A Huang, T Hubert, B Romera-Paredes, M Barekatain, ... Nature 610 (7930), 47-53, 2022 | 563 | 2022 |
Gemini 1.5: Unlocking multimodal understanding across millions of tokens of context M Reid, N Savinov, D Teplyashin, D Lepikhin, T Lillicrap, J Alayrac, ... arXiv preprint arXiv:2403.05530, 2024 | 395 | 2024 |
Cyprien de Masson d’Autume, Igor Babuschkin, Xinyun Chen, Po-Sen Huang, Johannes Welbl, Sven Gowal, Alexey Cherepanov, James Molloy, Daniel J Y Li, D Choi, J Chung, N Kushman, J Schrittwieser, R Leblond, T Eccles, ... Science 378 (6624), 1092-1097, 2022 | 273 | 2022 |
OpenSpiel: A framework for reinforcement learning in games M Lanctot, E Lockhart, JB Lespiau, V Zambaldi, S Upadhyay, J Pérolat, ... arXiv preprint arXiv:1908.09453, 2019 | 271 | 2019 |
Mastering chess and shogi by self-play with a general reinforcement learning algorithm. arXiv 2017 D Silver, T Hubert, J Schrittwieser, I Antonoglou, M Lai, A Guez, M Lanctot, ... arXiv preprint arXiv:1712.01815, 2017 | 160 | 2017 |
Bayesian optimization in alphago Y Chen, A Huang, Z Wang, I Antonoglou, J Schrittwieser, D Silver, ... arXiv preprint arXiv:1812.06855, 2018 | 157 | 2018 |
Gemini: A family of highly capable multimodal models R Anil, S Borgeaud, Y Wu, JB Alayrac, J Yu, R Soricut, J Schalkwyk, ... arXiv preprint arXiv:2312.11805 1, 2023 | 150 | 2023 |
Faster sorting algorithms discovered using deep reinforcement learning DJ Mankowitz, A Michi, A Zhernov, M Gelmi, M Selvi, C Paduraru, ... Nature 618 (7964), 257-263, 2023 | 142 | 2023 |
Online and offline reinforcement learning by planning with a learned model J Schrittwieser, T Hubert, A Mandhane, M Barekatain, I Antonoglou, ... Advances in Neural Information Processing Systems 34, 27580-27591, 2021 | 117 | 2021 |
Learning and planning in complex action spaces T Hubert, J Schrittwieser, I Antonoglou, M Barekatain, S Schmitt, D Silver International Conference on Machine Learning, 4476-4486, 2021 | 79 | 2021 |
Policy improvement by planning with Gumbel I Danihelka, A Guez, J Schrittwieser, D Silver International Conference on Learning Representations, 2022 | 61 | 2022 |